Bandstructure of Si in GW
Posted: Wed Dec 05, 2012 7:53 am
Dear all,
I downloaded an example for GW bandstructure from http://cms.mpi.univie.ac.at/wiki/index. ... WANNIER90). I followed the guide provided on this website, installed the wannier90 and also recompiled the VASP for the vasp2wannier90 interface, but did not got the expected result. At the third step, no input files for wannier90 runs (inculdes wannier90.amn, wannier90.mmn, wannier90.eig ) are generated.
Here are the INCAR and the output file. Wolud anyone please help me ?
INCAR---------------------------
## Step 1: default PBE
ISMEAR = 0
SIGMA = 0.05
GGA = PE
##
## Step 2: virtual orbitals
#ISMEAR = 0
#SIGMA = 0.05
#GGA = PE
#
#ALGO = Exact
#NBANDS = 64
#LOPTICS=.TRUE.
#NEDOS=2000
##
## Step 3: GW + WANNIER90
#ALGO = GW0 ; LSPECTRAL = .TRUE. ; NOMEGA = 50
#NBANDS=64
#LRPA = .FALSE.
#LWANNIER90=.TRUE.
##
-----------------------------------------
output--------------------------------
Sender: LSF System <lsfadmin@a125>
Subject: Job 2409433: <./vasp.lsf> Done
Job <./vasp.lsf> was submitted from host <inode01> by user <zjuiseexy2> in cluster <MagicCube_SC1>.
Job was executed on host(s) <a125>, in queue <score>, as user <zjuiseexy2> in cluster <MagicCube_SC1>.
</home/users/zjuiseexy2> was used as the home directory.
</home/users/zjuiseexy2/chairliu/vasp/Si_bandstructure_GW> was used as the working directory.
Started at Wed Dec 5 11:27:24 2012
Results reported at Wed Dec 5 11:31:17 2012
Your job looked like:
------------------------------------------------------------
# LSBATCH: User input
./vasp.lsf
------------------------------------------------------------
Successfully completed.
Resource usage summary:
CPU time : 206.96 sec.
Max Memory : 40 MB
Max Swap : 100 MB
Max Processes : 8
Max Threads : 9
The output (if any) follows:
running on 1 nodes
distr: one band on 1 nodes, 1 groups
vasp.5.2.12 11Nov11 complex
POSCAR found : 1 types and 2 ions
-----------------------------------------------------------------------------
| |
| W W AA RRRRR N N II N N GGGG !!! |
| W W A A R R NN N II NN N G G !!! |
| W W A A R R N N N II N N N G !!! |
| W WW W AAAAAA RRRRR N N N II N N N G GGG ! |
| WW WW A A R R N NN II N NN G G |
| W W A A R R N N II N N GGGG !!! |
| |
| Use PRECFOCK to select the mode for HF type calculations |
| PRECFOCK= L low (coarse grid for HF, normal augmentation charge) |
| PRECFOCK= M medium (normal grid for HF, normal augmentation charge) |
| PRECFOCK= F fast (coarse grid for HF, soft augmentation charge) |
| PRECFOCK= N normal (PREC=N grid for HF, soft augmentation charge) |
| PRECFOCK= A accurate (PREC=A grid for HF, soft augmentation charge) |
| |
| L is equivalent to ENCUTFOCK=0 in vasp.5.2.2 |
| M is equivalent to vasp.5.2.2 if ENCUTFOCK is not set |
| M&L cause significant noise in the forces and are no longer recommended |
| |
| N is recommended for routine calculations, little noise to be expected |
| A accurate is now recommended for very accurate calculations |
| F fast is now recommended for quick calculations (even phonons often ok) |
| (speedup between 2 and 4) |
| |
-----------------------------------------------------------------------------
LDA part: xc-table for Ceperly-Alder, standard interpolation
found WAVECAR, reading the header
POSCAR, INCAR and KPOINTS ok, starting setup
WARNING: small aliasing (wrap around) errors must be expected
FFT: planning ...( 1 )
reading WAVECAR
the WAVECAR file was read sucessfully
initial charge from wavefunction
calculate exact exchange contribution
the WAVEDER file was read successfully
energies w=
0.0 0.0 0.6 0.0 1.2 0.0 1.8 0.0 2.4 0.0
3.0 0.0 3.6 0.0 4.2 0.0 4.7 0.0 5.3 0.0
5.8 0.0 6.3 0.0 6.9 0.0 7.4 0.0 7.9 0.0
8.4 0.0 8.9 0.0 9.4 0.0 9.9 0.0 10.4 0.0
10.9 0.0 11.5 0.0 12.0 0.0 12.6 0.0 13.1 0.0
13.7 0.0 14.3 0.0 15.0 0.0 15.7 0.0 16.4 0.0
17.1 0.0 18.0 0.0 18.9 0.0 19.9 0.0 20.9 0.0
22.1 0.0 23.5 0.0 25.0 0.0 26.8 0.0 28.9 0.0
31.3 0.0 34.3 0.0 37.9 0.0 42.4 0.0 48.4 0.0
56.4 0.0 67.9 0.0 85.5 0.0 116.0 0.0 181.4 0.0
responsefunction array rank= 200
LDA part: xc-table for Ceperly-Alder, standard interpolation
allocating 50 responsefunctions rank= 200
allocating 50 responsefunctions rank= 200
Doing 50 frequencies in blocks of 50
NQ= 1 0.0000 0.0000 0.0000,
|.........|.........|.........|.........|.........|.........|.........|.........
performed 38000 updates of chi_q(r,r)
total number of BLAS operations 10.20 Gflops
NQ= 2 0.2500 0.0000 0.0000,
|.........|.........|.........|.........|.........|.........|.........|.........
performed 105000 updates of chi_q(r,r)
total number of BLAS operations 29.11 Gflops
NQ= 3 0.5000 0.0000 0.0000,
|.........|.........|.........|.........|.........|.........|.........|.........
performed 164000 updates of chi_q(r,r)
total number of BLAS operations 44.50 Gflops
NQ= 4 0.2500 0.2500 0.0000,
|.........|.........|.........|.........|.........|.........|.........|.........
performed 231000 updates of chi_q(r,r)
total number of BLAS operations 61.63 Gflops
NQ= 5 0.5000 0.2500 0.0000,
|.........|.........|.........|.........|.........|.........|.........|.........
performed 321000 updates of chi_q(r,r)
total number of BLAS operations 87.11 Gflops
NQ= 6 -0.2500 0.2500 0.0000,
|.........|.........|.........|.........|.........|.........|.........|.........
performed 402000 updates of chi_q(r,r)
total number of BLAS operations 111.27 Gflops
NQ= 7 0.5000 0.5000 0.0000,
|.........|.........|.........|.........|.........|.........|.........|.........
performed 455000 updates of chi_q(r,r)
total number of BLAS operations 126.65 Gflops
NQ= 8 -0.2500 0.5000 0.2500,
|.........|.........|.........|.........|.........|.........|.........|.........
performed 520000 updates of chi_q(r,r)
total number of BLAS operations 147.62 Gflops
resolving degeneracies of screened two electron integrals
calculate QP shifts <psi_nk| G(iteration)W_0 |psi_nk>: iteration 1
writing wavefunctions
entering main loop
-----------------------------------------------------------
I downloaded an example for GW bandstructure from http://cms.mpi.univie.ac.at/wiki/index. ... WANNIER90). I followed the guide provided on this website, installed the wannier90 and also recompiled the VASP for the vasp2wannier90 interface, but did not got the expected result. At the third step, no input files for wannier90 runs (inculdes wannier90.amn, wannier90.mmn, wannier90.eig ) are generated.
Here are the INCAR and the output file. Wolud anyone please help me ?
INCAR---------------------------
## Step 1: default PBE
ISMEAR = 0
SIGMA = 0.05
GGA = PE
##
## Step 2: virtual orbitals
#ISMEAR = 0
#SIGMA = 0.05
#GGA = PE
#
#ALGO = Exact
#NBANDS = 64
#LOPTICS=.TRUE.
#NEDOS=2000
##
## Step 3: GW + WANNIER90
#ALGO = GW0 ; LSPECTRAL = .TRUE. ; NOMEGA = 50
#NBANDS=64
#LRPA = .FALSE.
#LWANNIER90=.TRUE.
##
-----------------------------------------
output--------------------------------
Sender: LSF System <lsfadmin@a125>
Subject: Job 2409433: <./vasp.lsf> Done
Job <./vasp.lsf> was submitted from host <inode01> by user <zjuiseexy2> in cluster <MagicCube_SC1>.
Job was executed on host(s) <a125>, in queue <score>, as user <zjuiseexy2> in cluster <MagicCube_SC1>.
</home/users/zjuiseexy2> was used as the home directory.
</home/users/zjuiseexy2/chairliu/vasp/Si_bandstructure_GW> was used as the working directory.
Started at Wed Dec 5 11:27:24 2012
Results reported at Wed Dec 5 11:31:17 2012
Your job looked like:
------------------------------------------------------------
# LSBATCH: User input
./vasp.lsf
------------------------------------------------------------
Successfully completed.
Resource usage summary:
CPU time : 206.96 sec.
Max Memory : 40 MB
Max Swap : 100 MB
Max Processes : 8
Max Threads : 9
The output (if any) follows:
running on 1 nodes
distr: one band on 1 nodes, 1 groups
vasp.5.2.12 11Nov11 complex
POSCAR found : 1 types and 2 ions
-----------------------------------------------------------------------------
| |
| W W AA RRRRR N N II N N GGGG !!! |
| W W A A R R NN N II NN N G G !!! |
| W W A A R R N N N II N N N G !!! |
| W WW W AAAAAA RRRRR N N N II N N N G GGG ! |
| WW WW A A R R N NN II N NN G G |
| W W A A R R N N II N N GGGG !!! |
| |
| Use PRECFOCK to select the mode for HF type calculations |
| PRECFOCK= L low (coarse grid for HF, normal augmentation charge) |
| PRECFOCK= M medium (normal grid for HF, normal augmentation charge) |
| PRECFOCK= F fast (coarse grid for HF, soft augmentation charge) |
| PRECFOCK= N normal (PREC=N grid for HF, soft augmentation charge) |
| PRECFOCK= A accurate (PREC=A grid for HF, soft augmentation charge) |
| |
| L is equivalent to ENCUTFOCK=0 in vasp.5.2.2 |
| M is equivalent to vasp.5.2.2 if ENCUTFOCK is not set |
| M&L cause significant noise in the forces and are no longer recommended |
| |
| N is recommended for routine calculations, little noise to be expected |
| A accurate is now recommended for very accurate calculations |
| F fast is now recommended for quick calculations (even phonons often ok) |
| (speedup between 2 and 4) |
| |
-----------------------------------------------------------------------------
LDA part: xc-table for Ceperly-Alder, standard interpolation
found WAVECAR, reading the header
POSCAR, INCAR and KPOINTS ok, starting setup
WARNING: small aliasing (wrap around) errors must be expected
FFT: planning ...( 1 )
reading WAVECAR
the WAVECAR file was read sucessfully
initial charge from wavefunction
calculate exact exchange contribution
the WAVEDER file was read successfully
energies w=
0.0 0.0 0.6 0.0 1.2 0.0 1.8 0.0 2.4 0.0
3.0 0.0 3.6 0.0 4.2 0.0 4.7 0.0 5.3 0.0
5.8 0.0 6.3 0.0 6.9 0.0 7.4 0.0 7.9 0.0
8.4 0.0 8.9 0.0 9.4 0.0 9.9 0.0 10.4 0.0
10.9 0.0 11.5 0.0 12.0 0.0 12.6 0.0 13.1 0.0
13.7 0.0 14.3 0.0 15.0 0.0 15.7 0.0 16.4 0.0
17.1 0.0 18.0 0.0 18.9 0.0 19.9 0.0 20.9 0.0
22.1 0.0 23.5 0.0 25.0 0.0 26.8 0.0 28.9 0.0
31.3 0.0 34.3 0.0 37.9 0.0 42.4 0.0 48.4 0.0
56.4 0.0 67.9 0.0 85.5 0.0 116.0 0.0 181.4 0.0
responsefunction array rank= 200
LDA part: xc-table for Ceperly-Alder, standard interpolation
allocating 50 responsefunctions rank= 200
allocating 50 responsefunctions rank= 200
Doing 50 frequencies in blocks of 50
NQ= 1 0.0000 0.0000 0.0000,
|.........|.........|.........|.........|.........|.........|.........|.........
performed 38000 updates of chi_q(r,r)
total number of BLAS operations 10.20 Gflops
NQ= 2 0.2500 0.0000 0.0000,
|.........|.........|.........|.........|.........|.........|.........|.........
performed 105000 updates of chi_q(r,r)
total number of BLAS operations 29.11 Gflops
NQ= 3 0.5000 0.0000 0.0000,
|.........|.........|.........|.........|.........|.........|.........|.........
performed 164000 updates of chi_q(r,r)
total number of BLAS operations 44.50 Gflops
NQ= 4 0.2500 0.2500 0.0000,
|.........|.........|.........|.........|.........|.........|.........|.........
performed 231000 updates of chi_q(r,r)
total number of BLAS operations 61.63 Gflops
NQ= 5 0.5000 0.2500 0.0000,
|.........|.........|.........|.........|.........|.........|.........|.........
performed 321000 updates of chi_q(r,r)
total number of BLAS operations 87.11 Gflops
NQ= 6 -0.2500 0.2500 0.0000,
|.........|.........|.........|.........|.........|.........|.........|.........
performed 402000 updates of chi_q(r,r)
total number of BLAS operations 111.27 Gflops
NQ= 7 0.5000 0.5000 0.0000,
|.........|.........|.........|.........|.........|.........|.........|.........
performed 455000 updates of chi_q(r,r)
total number of BLAS operations 126.65 Gflops
NQ= 8 -0.2500 0.5000 0.2500,
|.........|.........|.........|.........|.........|.........|.........|.........
performed 520000 updates of chi_q(r,r)
total number of BLAS operations 147.62 Gflops
resolving degeneracies of screened two electron integrals
calculate QP shifts <psi_nk| G(iteration)W_0 |psi_nk>: iteration 1
writing wavefunctions
entering main loop
-----------------------------------------------------------