Page 1 of 1

Imaginary modes

Posted: Mon Nov 13, 2017 12:39 pm
by Tobias Kraemer
Hi all,

Following a geometry optimisation of my structure (organometallic species with 324 atoms containing Rh, P, C, H, B, F) I performed a vibrational analysis. The calculation revealed the presence of 4 small imaginary modes (8-20 cm-1). I would like to ask whether these should be discarded as noise or whether they are real imaginary modes that should be reoptimised. I am generally trying to get rid of any imaginary mode in the structure, but sometimes this is difficult and one could go on forever doing so. Since I used fairly default settings for the geometry optimisation, with EDIFF=10-7, I wondered if there was a more robust protocol to generate tighter convergence during the optimisation runs. I have tried the EDIFFG tag, but with little success (more imaginary modes). I am not sure I have done this right though. Is there a way of tightening the convergence up in a consistent way? I know that I should also have an eye on the SCF convergence, since the gradients critically depend on the energy.

I would much appreciate any comments on geometry optimisations and what to do in cases when one is left with a number of small imaginary modes. Ignore? Reoptimise?

Thanks in advance (see INCARs below)

Tobias


INCAR (opt)
General:
SYSTEM = Rh-dcype-hexane
! if enough K-points are present -5 should be used
ISMEAR = 0 ! 0: Gaussian -> semicond/insulator ; 1-N: MP; -5: Tetra+Blochl -> metal/very accurate energy/forces
SIGMA = 0.05
EDIFF = 1.0E-7
PREC = Normal ! to make ROPT=2.0E-4 for LREAL=Auto
LREAL = Auto ! cheaper for large cell's we are using
ENCUT = 600 !
ISYM = 2 # use symmetry as done for PAW PP

NELMIN = 8
LWAVE = .FALSE.
LCHARG = .FALSE.
! LVTOT = .TRUE. ! Write LOCPOT file for Toon
! LVHAR = .TRUE. ! but LOCPOT without exchange and correlation contribution for forcefields Toon
VOSKOWN = 1 ! important for GGA (PW91) for interpolation of XC...since we only use PBE=switch on (LDA: VOSKOWN=0)
LASPH = .TRUE. ! For VASP.5.X the aspherical contributions are properly accounted for in the Kohn-Sham potential
! as well. This is essential for accurate total energies and band structure calculations for f-elements
! (e.g. ceria), all 3d-elements (transition metal oxides), and magnetic atoms in the 2nd row (B-F atom),
! in particular if LDA+U or hybrid functionals or meta-GGAs are used, since these functionals often result
! in aspherical charge densities.

Van der Waals Interaction (vasp 5.3.3 patched verion):
IVDW = 12 ! switches between 0:off, 1: DFT-D3 and 2: TS-VDW (default=1)

dynamic:
IBRION = 2 ! -1: Fix atoms; 0: MD; 2: ConjGrad relax; 44: improved dimer method
NSW = 500 ! Number ionic steps
ISIF = 0 # relax ions, no change cell shape, no change cell volume (volume changes require ENCUT*1.3)
POTIM = 0.2

parallel:
LPLANE = .TRUE.
NPAR = 16

INCAR (phon)
General:
SYSTEM = Rh-dcype-hexadiene
! if enough K-points are present -5 should be used
ISMEAR = 0 ! 0: Gaussian -> semicond/insulator ; 1-N: MP; -5: Tetra+Blochl -> metal/very accurate energy/forces
SIGMA = 0.05
EDIFF = 1.0E-8
PREC = Normal ! to make ROPT=2.0E-4 for LREAL=Auto
LREAL = Auto ! cheaper for large cell's we are using
ENCUT = 600 !
ISYM = 2 # use symmetry as done for PAW PP

NELMIN = 8
LWAVE = .FALSE.
LCHARG = .FALSE.
! LVTOT = .TRUE. ! Write LOCPOT file for Toon
! LVHAR = .TRUE. ! but LOCPOT without exchange and correlation contribution for forcefields Toon
VOSKOWN = 1 ! important for GGA (PW91) for interpolation of XC...since we only use PBE=switch on (LDA: VOSKOWN=0)
LASPH = .TRUE. ! For VASP.5.X the aspherical contributions are properly accounted for in the Kohn-Sham potential
! as well. This is essential for accurate total energies and band structure calculations for f-elements
! (e.g. ceria), all 3d-elements (transition metal oxides), and magnetic atoms in the 2nd row (B-F atom),
! in particular if LDA+U or hybrid functionals or meta-GGAs are used, since these functionals often result
! in aspherical charge densities.

Van der Waals Interaction (vasp 5.3.3 patched verion):
IVDW = 12 ! switches between 0:off, 1: DFT-D3 and 2: TS-VDW (default=1)

dynamic:
IBRION = 6 ! -1: Fix atoms; 0: MD; 2: ConjGrad relax; 44: improved dimer method
NSW = 1 ! Number electronic steps
ISIF = 0 # relax ions, no change cell shape, no change cell volume (volume changes require ENCUT*1.3)
NFREE = 2
POTIM = 0.015

parallel:
LPLANE = .TRUE.
# NPAR = 24
# NCORE = 24

Re: Imaginary modes

Posted: Wed Sep 11, 2024 3:46 pm
by support_vasp

Hi,

We're sorry that we didn’t answer your question. This does not live up to the quality of support that we aim to provide. The team has since expanded. If we can still help with your problem, please ask again in a new post, linking to this one, and we will answer as quickly as possible.

Best wishes,

VASP