How to find the direction of spin moments in case of a spiral calculation
Posted: Wed May 30, 2007 1:52 pm
Considering a simple system with two Fe ions:
My POSCAR file:
Fe
1.00000000000000
8.0000000000000000 0.00000000000000 0.0000000000000000
0.0000000000000000 8.00000000000000 0.0000000000000000
0.0000000000000000 0.00000000000000 4.0000000000000000
2
Direct
0.5000000000000000 0.5000000000000000 0.0000000000000000
0.5000000000000000 0.5000000000000000 0.5000000000000000
My INCAR file:
IALGO=38
EDIFF=1E-05
EDIFFG = -0.05
ISMEAR=-5
ISPIN=2
SIGMA=0.1
NSW=0
IBRION=2
LPLANE = .TRUE.
NPAR = 1
LSCALU = .FALSE.
NSIM = 4
LREAL=AUTO
ISIF=2
ENCUT=400
PREC=accurate
MAGMOM= 2 0 0 1.17557050458 1.61803398875 0
LORBIT=11
#LWAVE=F
LSPIRAL=.TRUE.
#LASPH=.TRUE.
QSPIRAL = 0.0 0.0 0.3
LZEROZ=.TRUE.
LNONCOLLINEAR =.TRUE.
ISYM=0
Setting LORBIT=11,
I found the following in the OUTCAR file:
magnetization (x)
# of ion s p d tot
----------------------------------------
1 0.060 0.027 2.497 2.584
2 0.060 0.027 2.496 2.584
------------------------------------------------
tot 0.120 0.054 4.994 5.168
magnetization (y)
# of ion s p d tot
----------------------------------------
1 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000
------------------------------------------------
tot 0.000 0.000 0.000 0.000
magnetization (z)
# of ion s p d tot
----------------------------------------
1 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000
------------------------------------------------
tot 0.000 0.000 0.000 0.000
But the results seem inconsistent with those specified by "MAGMOM":
MAGMOM= 2 0 0 1.17557050458 1.61803398875 0
I guess the magnetization (M_x, M_y, M_z) given in the OUTCAR file refers to that in the local spin coordinate system, instead of global coordinate system: the magnetization in the global coordinate system should be
M_x(global) = M_x cos(2pi*q.R) + M_y sin(2pi*q.R)
M_y(global) = M_y cos(2pi*q.R) + M_x sin(2pi*q.R)
M_z(global) = M_z
In the current case, q=(0,0,0.3), R(second iron)=(0.5, 0.5, 0.5)
In this way, it will agree with the input magnetizations.
Is this right?
Thank you in advance.
<span class='smallblacktext'>[ Edited ]</span>
My POSCAR file:
Fe
1.00000000000000
8.0000000000000000 0.00000000000000 0.0000000000000000
0.0000000000000000 8.00000000000000 0.0000000000000000
0.0000000000000000 0.00000000000000 4.0000000000000000
2
Direct
0.5000000000000000 0.5000000000000000 0.0000000000000000
0.5000000000000000 0.5000000000000000 0.5000000000000000
My INCAR file:
IALGO=38
EDIFF=1E-05
EDIFFG = -0.05
ISMEAR=-5
ISPIN=2
SIGMA=0.1
NSW=0
IBRION=2
LPLANE = .TRUE.
NPAR = 1
LSCALU = .FALSE.
NSIM = 4
LREAL=AUTO
ISIF=2
ENCUT=400
PREC=accurate
MAGMOM= 2 0 0 1.17557050458 1.61803398875 0
LORBIT=11
#LWAVE=F
LSPIRAL=.TRUE.
#LASPH=.TRUE.
QSPIRAL = 0.0 0.0 0.3
LZEROZ=.TRUE.
LNONCOLLINEAR =.TRUE.
ISYM=0
Setting LORBIT=11,
I found the following in the OUTCAR file:
magnetization (x)
# of ion s p d tot
----------------------------------------
1 0.060 0.027 2.497 2.584
2 0.060 0.027 2.496 2.584
------------------------------------------------
tot 0.120 0.054 4.994 5.168
magnetization (y)
# of ion s p d tot
----------------------------------------
1 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000
------------------------------------------------
tot 0.000 0.000 0.000 0.000
magnetization (z)
# of ion s p d tot
----------------------------------------
1 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000
------------------------------------------------
tot 0.000 0.000 0.000 0.000
But the results seem inconsistent with those specified by "MAGMOM":
MAGMOM= 2 0 0 1.17557050458 1.61803398875 0
I guess the magnetization (M_x, M_y, M_z) given in the OUTCAR file refers to that in the local spin coordinate system, instead of global coordinate system: the magnetization in the global coordinate system should be
M_x(global) = M_x cos(2pi*q.R) + M_y sin(2pi*q.R)
M_y(global) = M_y cos(2pi*q.R) + M_x sin(2pi*q.R)
M_z(global) = M_z
In the current case, q=(0,0,0.3), R(second iron)=(0.5, 0.5, 0.5)
In this way, it will agree with the input magnetizations.
Is this right?
Thank you in advance.
<span class='smallblacktext'>[ Edited ]</span>