Magnetic moment in an antiferromagnet
Posted: Tue Jul 15, 2008 7:18 pm
I am trying o figure out how to get the magnetic moment on each atom in an antiferromagnet. "Magnetization" is written out at two places: One after each step in the SCF cycle:
----------------------------------------- Iteration 1( 1) ---------------------------------------
POTLOK: VPU time 28.60: CPU time 28.61
SETDIJ: VPU time 0.30: CPU time 0.30
EDDAV : VPU time 76.99: CPU time 77.02
DOS : VPU time 0.00: CPU time 0.00
------------------------------------------
LOOP: VPU time 105.89: CPU time 105.93
eigenvalue-minimisations : 144
total energy-change (2. order) : 0.5255710E+02 (-0.2570726E+03)
number of electron 26.0000000 magnetization 0.0000000
augmentation part 26.0000000 magnetization 0.0000000
... etc
But this is zero in case of AFM.
The other place it is written is after each ionic step:
magnetization (x)
# of ion s p d tot
----------------------------------------
1 0.120 0.081 3.371 3.571
2 -0.116 -0.079 -3.370 -3.565
3 -0.012 -0.017 0.000 -0.029
4 -0.014 -0.019 0.000 -0.033
5 -0.010 -0.018 0.000 -0.028
6 -0.024 -0.015 0.000 -0.040
7 -0.022 -0.015 0.000 -0.037
8 -0.022 -0.015 0.000 -0.037
9 -0.013 -0.017 0.000 -0.029
10 -0.020 -0.015 0.000 -0.035
11 0.016 0.019 0.000 0.035
12 0.022 0.016 0.000 0.038
13 0.019 0.015 0.000 0.033
14 0.025 0.015 0.000 0.039
15 0.017 0.018 0.000 0.035
16 0.015 0.016 0.000 0.031
17 0.011 0.018 0.000 0.028
18 0.023 0.015 0.000 0.038
------------------------------------------------
tot 0.014 0.000 0.001 0.015
In which the angular momentum decomposed magnetic moment on all the atoms are printed out. But are these numbers correct? . Because, in case of a ferromagnet, these atomic moments do not add up to the total magnetization given at the end of each SCF cycle (and which seems more reasonable for known systems).
Where does one find the correct magnetic moments on atoms in AFM systems?
----------------------------------------- Iteration 1( 1) ---------------------------------------
POTLOK: VPU time 28.60: CPU time 28.61
SETDIJ: VPU time 0.30: CPU time 0.30
EDDAV : VPU time 76.99: CPU time 77.02
DOS : VPU time 0.00: CPU time 0.00
------------------------------------------
LOOP: VPU time 105.89: CPU time 105.93
eigenvalue-minimisations : 144
total energy-change (2. order) : 0.5255710E+02 (-0.2570726E+03)
number of electron 26.0000000 magnetization 0.0000000
augmentation part 26.0000000 magnetization 0.0000000
... etc
But this is zero in case of AFM.
The other place it is written is after each ionic step:
magnetization (x)
# of ion s p d tot
----------------------------------------
1 0.120 0.081 3.371 3.571
2 -0.116 -0.079 -3.370 -3.565
3 -0.012 -0.017 0.000 -0.029
4 -0.014 -0.019 0.000 -0.033
5 -0.010 -0.018 0.000 -0.028
6 -0.024 -0.015 0.000 -0.040
7 -0.022 -0.015 0.000 -0.037
8 -0.022 -0.015 0.000 -0.037
9 -0.013 -0.017 0.000 -0.029
10 -0.020 -0.015 0.000 -0.035
11 0.016 0.019 0.000 0.035
12 0.022 0.016 0.000 0.038
13 0.019 0.015 0.000 0.033
14 0.025 0.015 0.000 0.039
15 0.017 0.018 0.000 0.035
16 0.015 0.016 0.000 0.031
17 0.011 0.018 0.000 0.028
18 0.023 0.015 0.000 0.038
------------------------------------------------
tot 0.014 0.000 0.001 0.015
In which the angular momentum decomposed magnetic moment on all the atoms are printed out. But are these numbers correct? . Because, in case of a ferromagnet, these atomic moments do not add up to the total magnetization given at the end of each SCF cycle (and which seems more reasonable for known systems).
Where does one find the correct magnetic moments on atoms in AFM systems?