I'm trying to run a long NVT simulation for an amorphous material at 300 K. I first train MLFF in the NPT ensemble in chunks of 20 ps to avoid large deformations of the cell for 60 ps. This is the last INCAR file for training:
Code: Select all
SYSTEM = alumina
ISTART =0
ICHARG =2
ISYM = 0
ML_LMLFF = .TRUE.
ML_MODE = train
POTIM = 1
GGA = PE # RP stands for RPBE, PE for PBE, 91 for PW91
-----------------------------------------
Parameter for parallelization:
---------
--------------------------------
LPLANE = .TRUE.
------------------------------------------
Electronic Relaxation:
------------------------------------------
LREAL = Auto
ENCUT = 520
PREC = Normal
EDIFF = 1e-5
ALGO = Normal
NELM= 60
NELMIN = 6
ISPIN = 1
IVDW = 11
-------------------------------------------
Ionic Relaxation:
-------------------------------------------
NSW = 20000
#AIMD using Nose-Hoover
IBRION = 0
ISIF = 3
TEBEG = 300
TEEND = 300
MDALGO = 3
LANGEVIN_GAMMA=5 5 5 5
LANGEVIN_GAMMA_L=5
--------------------------------------------
DOS Related:
--------------------------------------------
ISMEAR = 0
SIGMA = 0.05
--------------------------------------------
Output Control:
--------------------------------------------
LWAVE = .FALSE.
LCHARG= .FALSE.
NWRITE = 1
ML_MB = 3000
NCORE= 16
Then I did a refit to get the following errors:
Code: Select all
# ERR nstep rmse_energy rmse_force rmse_stress
# ERR 2 3 4 5
# ERR ######################################################################
ERR 0 1.50428578E-04 3.34169445E-02 3.21668029E-01
I averaged the errors from 50 snapshots that are equidistant in time from a 50-ps run using the MLFF to get test errors.
They are :
Code: Select all
energy error per atom, rmse force, rmse stress
3.325842696609328e-05, 0.03471839929114923, 0.35828575204040314
The errors seem fine. I then run an NVT simulation using the MLFF only. This is the INCAR:
Code: Select all
SYSTEM = alumina
ISTART =0
ICHARG =2
ISYM = 0
ML_LMLFF = .TRUE.
ML_MODE = run
ML_OUTBLOCK = 20
GGA = PE # RP stands for RPBE, PE for PBE, 91 for PW91
-----------------------------------------
Parameter for parallelization:
---------
--------------------------------
LPLANE = .TRUE.
------------------------------------------
Electronic Relaxation:
------------------------------------------
LREAL = Auto
ENCUT = 520
PREC = Normal # precision:Medium/High/Low default medium . the same time, ROPT accuracy of approximately
# 1meV/atom (10e-3). recommend to use PREC Normal for everyday calculations in VASP.4.5
EDIFF = 1e-5 # converge criterion: default=1e-4
ALGO = Normal # algotithm (8-CG, 48-RMM), Fast means intially use DAV algo then use RMM.
NELM= 60 # default is 60
NELMIN = 6 # the minimum number of electronic SC steps Default is 2
ISPIN = 1 # spin polarized calculation (2-yes, 1-no)
IVDW = 11
-------------------------------------------
Ionic Relaxation:
-------------------------------------------
NSW = 4000000 # number of steps for IOM
#AIMD using Nose-Hoover
IBRION = 0 # choose molecular dynamics
MDALGO = 2 # using Nose-Hoover thermostat
ISIF = 2 # compute stress tensor but do not change box volume/shape
TEBEG = 300
TEEND = 300
POTIM = 1.0 # time step in femto seconds
SMASS = 1.0 # setting the virtual mass for the Nose-Hoover thermostat
--------------------------------------------
DOS Related:
--------------------------------------------
ISMEAR = 0
SIGMA = 0.05
LORBIT =11
--------------------------------------------
Output Control:
--------------------------------------------
LWAVE = .FALSE.
LCHARG= .FALSE.
NCORE= 16
A Nose-Hoover thermostat was used, and this is the energy profile:
The green curve is the running average over 2ps. I see sudden jumps in potential energies. Is it unphysical, or should it be seen as a relaxation of the material?
To get better statistics, I also simulated with a 2 by 2 by 2 supercell containing 1424 atoms. The change in potential energy is more severe, and I'm also getting spikes in the energy profile:
Does this mean the MLFF is unable to handle the larger supercell?
Thanks for your insights!